Chapter 5

The Wigner-Eckart theorem

We will now prove the Wigner-Eckart theorem. The theorem states that the matrix
elements of tensor operators with respect to angular momentum eigenfunctions satisfy
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('§'||T™®||~4) is the reduced matrix element and it is independent of the quantum
numbers m, m' and ¢q. The fact that the left side of Eq. (5.1) can be written as a
product of the Clebsch-Gordan coefficient and the reduced matrix element has im-
portant consequences. The first factor, that does not depend on the nature of the
tensor operator, depends only on the geometry of the problem, i.e. how the system
is oriented with respect to the z-axis. The reduced matrix element on the other hand
is independent of the quantum numbers m, m' and ¢, hence not dependent on the
orientation of the system. However, it does of course include for example the dynam-
ics of the system because 7' and 7 could include the radial quantum number. When
evaluating matrix elements of the type (y'j'm’ \Tq(’“) |7jm) we only need to do so for one
set of m, m' and ¢ because the rest can be related via the Wigner-Eckart theorem.
Clearly this is very helpful.

Following from the properties of the 3j-symbols (Eq. (2.23)) we immediately see
that Eq. (5.1) vanish unless

|j—k|§j'§j+k}

m =m+gq (5-2)

To prove the Wigner-Eckart theorem we begin with to recall the ladder operator (Eq.
(1.8))

Joljm) = /(G = m)(G +m + Dhljm + 1) }
J_|jm) = /(G + m)(j —m + D)h|jm — 1)

We also need the recursion relation between Clebsch-Gordan coefficients with fixed 7,
jo and 7 but with different m; and msy.

(5.3)

Jeljijogm) = (Jix + Jox) Y [drjemama)(jijamime|jijojm) (5.4)
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Egs. (5.3) now give (set m; = m/ and my = m))

JUFm) G £m+ 1)|jijajm+1) =
S (U F mh) Gr £ mh + 1)1 o, £ Tmb) +
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\/(j2 F mb) (ja £ mh + 1)|jrjamimy £ 1)) (Jrjamimy|jij2gm) (5.5)

Multiplying with (j1jomims| from the left in Eq. (5.5) and noting that the first term
on the right side is non-zero only if m; = m) + 1, my = mi, and that the second term
on the right side of Eq. (5.5) is non-zero only if if m; = m| and my = m}, + 1. We
now arrive at the recursion relation for the Clebsch-Gordan coefficients,

VG Fm)( £ m+ 1) (rjamimeljijajm £ 1) =
\/(j1 F ma)(J1 £ ma){(Gijema F 1meljijejm) +
\/(jz F m2)(j2 £ ma)(j1jzmime F 1]j1j2jm)+ (5.6)

Now consider (using Eq. (4.20))

(3 [T, Ty = B/ (k F @) (k =+ g + 1)('§'m’|TE) |yjm) (5.7)

or equivalently, expanding the commutator and using Eq. (5.3), we get

V' £ m) (5 F e+ )y mly | TP [y jm) =
VG Fm)( £ m+ 1)y 5'm' TP yjm £ 1) +
V kT @)k £ g+ 1D){y/5'm! | T8 [vm) (5.8)

substitute j' — j, m' — m, j — ji, m — my, k — j and ¢ — my we get with + — F

VG Fm) (G £m+ 1)y gm 1T yjima) =
V0t F ma + 1) G £ ma) (Y mI T [yioms ¥ 1) +
VG2 F m2) (a2 ma) ¢y g T2, [y jma ) (5.9)

A quick glance at Egs. (5.6) and (5.9) soon relieves that the two equations are very
similar. In fact, by rewriting the two equations as

ar +by+cz=0 } (5.10)

ar' + by +cz' =0

where

oy (DI
\/]1:Fm1+1 (j1 £m) (5.11)
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one sees that Eq. (5.10) describe two parallel planes, i.e.

E] = 2/ = i/ = constant (5.12)
oy oz

Eq. (5.12) is obviously true for all components and by picking one of them, e.g. the
second we get
(Y gmI T |yjima F 1)
(Jrjama F 1ma|j1jajm)

= constant (5.13)

and with the substitutions j — ji, m — m/, jo = k, mo = q1, j1 > jand m; F1 - m
we have

(7’j'm'|Tq(k)|fyjm) = constant - (jkmg|jkj'm') (5.14)

and the theorem has been proven! Once again we note that the constant is independent
of m, m' and ¢ and that all geometrical dependencies are in the Clebsch-Gordan
coefficient (oc 3j-symbol). Our problem has been separated into two parts, one with
and the other without geometrical dependence.
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